Matrix Representations and the Teichmüller Space of the Twice Punctured Torus
نویسنده
چکیده
We realise the Teichmüller space of the twice-punctured torus as a set of triples of matrices that are suitably normalised. As a consequence, we see the space as a simple open subset of R4 which is obtained directly from the matrix entries. We also discuss the connection between this representation and the one in terms of the traces of elements.
منابع مشابه
The Limiting Shape of One-dimensional Teichmüller Spaces
We show that the Bers embedding of the Teichmüller space of a once-punctured torus converges to the cardioid in the sense of Carathéodory up to rotation when the base torus goes to the boundary of its moduli space.
متن کاملPleating Coordinates for the Teichmüller Space of a Punctured Torus
We construct new coordinates for the Teichmüller space Teich of a punctured torus into R x R+ . The coordinates depend on the representation of Teich as a space of marked Kleinian groups GM that depend holomorphically on a parameter p varying in a simply connected domain in C . They describe the geometry of the hyperbolic manifold H3/^ ; they reflect exactly the visual patterns one sees in the ...
متن کاملBers Embedding of the Teichmüller Space of a Once-punctured Torus
In this note, we present a method of computing monodromies of projective structures on a once-punctured torus. This leads to an algorithm numerically visualizing the shape of the Bers embedding of a one-dimensional Teichmüller space. As a by-product, the value of the accessory parameter of a four-times punctured sphere will be calculated in a numerical way as well as the generators of a Fuchsia...
متن کاملThe Classification of Punctured-torus Groups
Thurston’s ending lamination conjecture proposes that a finitelygenerated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be though...
متن کاملParabolic Higgs Bundles and Teichmüller Spaces for Punctured Surfaces
In this paper we study the relation between parabolic Higgs bundles and irreducible representations of the fundamental group of punctured Riemann surfaces established by Simpson. We generalize a result of Hitchin, identifying those parabolic Higgs bundles that correspond to Fuchsian representations. We also study the Higgs bundles that give representations whose image is contained, after conjug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000